مهدوی و بهمنش(۱۳۸۴) در تحقیق خود از شبکه های عصبی مصنوعی برای پیشبینی قیمت سهام شرکت سرمایه گذاری البرز استفاده نمودند. نتیجه حاصل از مدل طراحی شده نشان میدهد که اگر یک شبکه عصبی مصنوعی درست آموزش ببیند میتواند روابط بین متغیرها را (هر چند پیچیده و غیرخطی) شناسایی کرده و در پیشبینی قیمت سهام شرکتهای سرمایه گذاری با حداقل خطا (در این تحقیق۰۴۴/۰) مؤثر واقع شود.
طالبی (۱۳۸۴) در پایان نامه کارشناسی ارشد خود قیمت سهام ۱۰ روز آینده ۴۰ شرکت فعال در بورس اوراق بهادار تهران را با بهره گرفتن از ۳ روش شبکه عصبی پیشخور تک لایه با الگوریتم یادگیری لونبرگ-مارکوات و معیار عملکرد میانگین مربعات خطا با ورودی ارزش بازار، شبکه عصبی با اضافه کردن میانگین های متحرک ۵، ۱۰، ۲۰روزه و ROC و RSI 12 روزه و مدل ARMA پیشبینی نمود. نتایج به دست آمده نشان داده است که مدل خطی ARMA بهتر از مدلهای غیر خطی شبکه های عصبی توانسته اند پیچیدگیهای سری های زمانی قیمت سهام را تجزیه و تحلیل نموده و برای پیشبینی قیمت سهام مورد استفاده قرار گیرد.
عربی (۱۳۸۴) در مطالعه خود به مقایسه روش شبکه عصبی با روش ARIMA در پیشبینی قیمت سهام شرکت سرمایه گذاری صنایع پتروشیمی پرداخته است. نتایج حاصل از ANN و ARIMA حاکی از برتری عملکرد شبکه عصبی مصنوعی نسبت به ARIMA میباشد.
زارع (۱۳۸۴) در مطالعه ای رفتار شاخص قیمت سهام را در ایران مورد بررسی قرار داده است. وی با بهره گرفتن از یک الگوی خود همبسته با وقفه توزیعی (ARDL) و بهره گیری از مدل تعالی قیمت گذاری دارایی های سرمایه ای (CAPM) سعی در شناخت و تبیین تاثیر برخی از متغیرهای تاثیرگذاری بر شاخص قیمت سهام بازار بورستهران طی دوره فصل سوم سال ۱۳۷۲ تا فصل اول سال ۱۳۸۲ دارد. نتایج الگوی کوتاه مدت نشان میدهد که متغیرهای وقفه اول لگاریتم شاخص قیمت سهام، لگاریتم نسبت شاخص قیمت داخلی به خارجی، لگاریتم قیمت نفت و لگاریتم بهای سکه دارای تاثیر مثبت و ورودی لگاریتم نرخ ارز و لگاریتم حجم پول دارای تاثیر منفی و معنی داری بر روی متغیر لگاریتم شاخص قیمت سهام میباشد. نتیجه برآورد الگوی بلند مدت نشان میدهد که متغیرهای لگاریتم نسبت شاخص قیمت داخلی به خارجی، لگاریتم شاخص قیمت مسکن، لگاریتم قیمت نفت و لگاریتم بهای سکه دارای رابطه مستقیم و دو متغیر لگاریتم نرخ ارز و لگاریتم حجم پول دارای رابطه عکس و معنی داری با متغیر لگاریتم شاخص قیمت سهام میباشند.
هادی پور (۱۳۸۲) مطالعه ای جهت تعیین بهترین مدل پیشبینی قیمت سهام در گروه صنایع غذایی و آشامیدنی بورس اوراق بهادار تهران انجام داده است. در این تحقیق پیشبینی با بهره گرفتن از روش های سری زمانی تخمین روند، هموارسازی نمایی و میانگین متحرک و باکس-جنکینز برای ۴ هفته انتهایی سال ۷۹ انجام شده است و سپس شاخص MSE روش های مختلف با یکدیگر مقایسه شده است. این تحقیق به این نکته اصرار می ورزد که مدل مشخصی برای پیشبینی قیمت سهام در گروه صنایع غذایی و آشامیدنی وجود ندارد و برای پیشبینی قیمت سهام هر شرکت ابتدا باید با بهره گرفتن از روند و خصوصیات آن سری زمانی داده ها، مدل مناسب را با بهره گرفتن از روش شناسی مدلهای پیشبینی انتخاب و سپس با بهره گرفتن از آن مدل به پیشبینی قیمت سهام آن شرکت اقدام نمود.
عباسپور (۱۳۸۱) مطالعه ای جهت پیشبینی قیمت سهام شرکت ایران خودرو در بازار بورس تهران با بهره گرفتن از شبکه عصبی مصنوعی انجام داده است. دادههایی که در این مطالعه مورد استفاده قرار گرفته به صورت روزانه بوده و دوره زمانی ۸۰-۱۳۷۹ را شامل می شود. متغیرهای مؤثر بر قیمت سهام شرکت ایران خودرو شامل نرخ ارز، قیمت نفت، نسبت P/E و حجم مبادلات سهام میباشد. نتایج این تحقیق نشان از برتری نتایج حاصل از پیشبینی قیمت توسط شبکه عصبی مصنوعی نسبت به روش باکس – جنکنیز میباشد.
چاوشی(۱۳۸۰) در مطالعه خود به پیشبینی پذیری رفتار قیمت سهام در بورس اوراق بهادار تهران توسط مدل چند شاخصی آربیتراژ و شبکه های عصبی مصنوعی پرداخته است. جهت آزمون این مسئله، قیمت روزانه سهام شرکت صنایع بهشهر به عنوان نمونه آماری انتخاب شده است. نتایج حاکی از موفقیت این دو مدل در پیشبینی رفتار قیمت سهام مورد نظر و همچنین برتری عملکرد شبکه های عصبی مصنوعی بر مدل چند شاخصی آربیتراژ بوده است.
صفر نواده (۱۳۸۰) در مطالعه خود به امکان سنجی پیشبینی قیمت سهام در بازار بورس اوراق بهادار تهران پرداخته است. وی این کار را از طریق بررسی چند متغیر مهم و تاثیر گذار که عبارتند از:
-
- نسبت سود تقسیم شده به قیمت سهم ()
-
- نسبت ()
-
- حجم مبادلات (V)
-
- ریسک ®
- تفاوت پایین ترین قیمت سهم با قیمت روز بخش بر قیمت روز سهم ()
و با بهره گرفتن از روشهای پیشبینی آماری رگرسیون و ARIMA انجام داده است.
بت شکن (۱۳۷۹) در پایان نامه خود از یکی از تکنیکهای هوش مصنوعی بنام شبکه های عصبیفازی ANFIS استفاده نموده و توانایی این مدل را در پیشبینی قیمت سهام در مقایسه با مدل های خطی ARIMA مورد سنجش قرار داده است. در شبیه سازی انجام شده انواعی از شبکه های ۲ ورودی تا ۵ ورودی با تعداد توابع عضویت متفاوت و نگاشتهای مختلف جهت پیشبینی سری زمانی قیمت سهام شرکت گروه بهمن مورد استفاده قرار گرفته اند. برای تعیین مدل ARIMA نیز متدولوژی باکس-جنکینز استفاده گردیده است. نتایج بررسی نشان دهنده برتری و اولویت شبکه ANFIS در پیشبینی قیمت سهام نسبت به مدل ARIMA میباشد.
عزیزخانی (۱۳۷۹) در مطالعه خود از روش های ترکیبی برای پیشبینی قیمت سهام استفاده کردهاست. در انجام این تحقیق دو شرکت به عنوان انتخاب شده و سپس با بهره گرفتن از روش های پیشبینی فردی قیمت سهام برای چند دوره مورد نظر برآورد شده است و نتایج حاصل از پیشبینیهای فردی با روش های مختلف ترکیب شده است. مدل ترکیبی از نظر کاهش میزان خطا با سایر مدل های مقایسه شده و در نهایت مدل بهینه معرفی شده است.
تیموری (۱۳۷۸) در پایان نامه کارشناسی ارشد خود تحت عنوان “کاربرد شبکه های عصبی در پیشبینی شاخص صنعت تحت تاثیر متغیرهای کلان اقتصادی” به مقایسه روش های پیشبینی خطی و عصبی پرداخته که در آن داده ها به صورت هفتگی میباشد. شبکه مورد استفاده دارای سه لایه است که لایه میانی شامل پنج گره بوده و توابع انتقال آن از نوع هلالی میباشند، نتایج این تحقیق نشان از برتری محسوس شبکه عصبی بر رگرسیون خطی دارد.
خالوزاده (۱۳۷۷) در رساله دکتری خود با بهره گرفتن از اطلاعات روزانه سری زمانی قیمت و بازده سهام شرکت شهد ایران به پیشبینی قیمت سهام و نیز ارائه مدل بهینه پرداخته است. روش های پیشبینی مورد استفاده در این تحقیق، شامل روش های پیشبینی بر اساس مدل های خطی و غیر خطی (شبکه های عصبی) میباشد و با توجه به نتایج به دست آمده نشان داده شده است که قیمت سهام از نگاشتهای پیچیده غیر خطی به وجود آمده اند و استفاده از انواع روش های خطی صحیح نمی باشد.
فرم در حال بارگذاری ...